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a

It is shown that Pierce’s pulse-position modulation scheme with 2L  pulse positions
used on a self-noise-limited direct-detection optical communication channel results in a
2L-ary  erasure channel that is equivalent to the parallel combination of L completely-
correlated binary erasure channels. The capacity of the full channel is the sum of the
capacities of the component channels, but the cutoff rate of the full channel is shown to
be much smaller than the sum of the cutoff rates. An interpretation of the cutoff rate is
given that suggests a complexity advantage in coding separately on tee component
channels. It is shown that if short-constraint-length convolutional codes with Viterbi
decoders are used on the component channels, then the performance and complexity
compare favorably with the Reed:Solomon  coding system proposed by McEliece  for the
full channel, The reasons for this unexpectedly fine performance by the convolutional
code system are explored in detail, as are various facets of the channel structure.

I. Introduction
A recent paper by Pierce (Ref. 1) has heightened interest in

direct-detection optical communications, particularly for space
applications. Pierce considered the situation where the only
“noise” limiting communications is that due to the inherent
randomness of the optical field at the receiver. He proposed
using M-ary pulse position modulation (PPM) together with
direct-detection by photon-counting at the receiver. The T
second modulation symbol interval is divided into M “slots,”
in only one of which an optical frequency pulse is transmitted.
By virtue of the noiseless assumption, no photons will be
detected by the receiver in the M - 1 slots where no signal is
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present. In the single slot where the transmitter was active, the
number of photons detected will be a Poisson random variable
whose mean we denote by X. Thus X is the average number of
received photons per modulation symbol interval. With prob-
ability

e = e-’ , (1)

no photons will be detected in the slot where the pulse was
transmitted. Thus, Pierce’s PPM scheme creates a constant
discrete memoryless channel (CDMC) that is just the M-ary
erasure channel where e is the erasure probability. For
purposes of this paper, we restrict consideration to the case
where

M = 2L (2)



for some positive integer L so that the modulation symbol can
be specified by L binary digits.

A simple calculation gives the capacity of Pierce’s PPM
channel as

C = L (1 - e) In (2)

= L (1 - ebb) In (2). (nats) (3)

On a per-photon basis, this capacity is just

C = L (1 - e-‘)  In (2)/h, (nats/photon)  ( 4 )

which, as Pierce noted, can be made arbitrarily large by
increasing the modulation alphabet size M or, equivalently, by
increasing L. Pierce concluded that the problem of communi-
cating efficiently over this self-noise-limited optical channel
was thus the coding problem of finding easily implementable
schemes to exploit this unlimited capacity.

Although the capacity of the CDMC created by a modula-
tion system is an undeniably interesting characterization of the
system’s capabilities, it unfortunately gives no information
about the complexity of the coding system needed to achieve
a desired decoding error probability. This limitation led
Wozencraft and Kennedy (Ref. 2) to propose using the cutoff
rate, Rb, of the resulting CDMC to characterize the modula-
tion system. They were motivated by the fact that R, is the
upper limit of code rates for which the average decoding
computation per information bit is finite when sequential
decoding is employed. Massey (Ref. 3) suggested further
reasons for preferring R, over C as a single parameter
characterization of a modulation system. He noted that,
whether block codes or convolutional codes are employed, R,
specifies both a range of code rates for which reliable decoding
is possible and also a measure of the complexity of the coding
system that will be required to achieve a desired error
probability. Massey suggested that, as a rule of thumb, R, is
the practical upper limit on code rates for reliable communica-
tions, whereas capacity is the theoretical upper limit.

McEliece and Welch (Ref. 4) and McEliece (Ref. 5) have
investigated the cutoff rate of the self-noise-limited direct-
detection optical channel and reached conclusions startlingly
different from those that arise from capacity considerations.
In Ref. 5, McEliece showed that, even allowing multiamplitude
pulsing and soft-decision demodulation, the modulation
system is limited to

6x, G 1 , (nats/photon) (5)

where the upper limit is attained by Pierce’s PPM scheme in
the limit of large M and small h, a result anticipated in Ref. 4.
In (S),  we have continued the practice begun in Ref. 4 of
employing script letters to denote channel measures on a
per-photon basis. Note that I%, = R,/h for Pierce’s PPM
channel.

The enormous discrepancy between the values of R, and C
for Pierce’s PPM channel renders it an ideal channel for
resolving the question of which parameter gives a more
meaningful measure of the quality of the modulation system.
The evidence thus far has seemed to favor R,. Note that for a
fixed symbol time T, the bandwidth of Pierce’s PPM scheme
grows linearly with M and hence exponentially with L because
of Eq. (2). McEliece, Rodemich and Rubin (Ref. 6) and
McEliece (Ref. 7) have shown that this “explosive” increase in
bandwidth is unavoidable in the self-noise-limited direct-
detection optical channel; they showed that for code rates bz
above 1 nat/photon,  the required bandwidth and the required
peak-to-average signal power must both grow exponentially
with 62. They conclude that no practical system could ever be
built to operate at a rate 62 above, say, 10 nats/photon.  The
same conclusion was reached by Butman,  Katz and Lesh
(Ref. 8) starting from a much different point, namely with
practical constraints on achievable time resolution and specifl-
cation that the information rate be interestingly large, say lo4
nats/sec or greater.

Besides the R, versus C debate, Pierce’s PPM channel
impinges on another ongoing controversy, namely assessing the
relative merits of block codes and convolutional codes. For
Pierce’s PPM channel, the evidence thus far has seemed to
favor block codes. McEliece (Refs. 7 and 9) has proposed using
Reed-Solomon (RS) codes on the optical PPM channel and has
shown that code rates up to 2 or 3 nats/photon are feasible.
Moreover, the large alphabet over which RS codes are defined
makes these codes appear as virtually ideal for this application,
as will be seen in Section IIIA.

In this article, we offer additional evidence in favor of R,
over C as a meaningful characterization of Pierce’s PPM
channel. But we also offer some rather surprising evidence to
support the claim that convolutional codes are superior to
block codes even in this application that is almost tailor made
to fit the virtues of RS codes.

In Section II, we show that the optical PPM channel can be
viewed as the parallel combination of L “completely correla-
ted” binary erasure channels (BEC’S),  and we investigate both
R, and C from this perspective. In Section III, we show that
the use of short-constraint-length binary convolutional codes
with Viterbi decoding on each component BEC yields coding
performance and complexity that compare favorably to those
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for RS codes, and we isolate the somewhat strange cause of Comparing Eq. (8) with Eq. (3), we see that there is no
this excellent performance by convolutional codes. Finally, in penalty in capacity if each of the L parallel BEC’S  is coded
Section IV, we offer some additional interpretations of our independently, as opposed to coding jointly over the compo-
results and raise some further questions of interest. nent channels, but neither is there any gain.

II. The Optical PPM Channel as
Parallel Completely Correlated BEC’s

The situation for the cutoff rate, R,, is much more
interesting. In general, R, for a CDMC is given by the
expression

Suppose we number the slots in Pierce’s PPM scheme from
0 to 2= - 1. For the modulation symbol,& we can choose the
index of the slot containing the optical frequency pulse. R, =  - m i n l n

r [
c c QW  m 2 (nats)

Writingz as the L-place radix-two number Q Y x 11
(9)

x  =  [X1,X2,...XL] where PO,lx)  is the probability that the channel output symbol
is y given that the input symbol was x, and where Q is a

= x,2=-'tx2 2=-2t...txL, (6)
probability distribution over the channel input alphabet
(Ref. 3). For the 2=-ary  erasure channel, Q(x) = 2-L for allx
is the minimizing distribution in Eq. (9) and gives

we can view the transmission of a single modulation symbol2
as the transmission of the L binary digits x1, x2, . . ., xL. For R, = -In  [ e t  2-L(1  -e)] (nats) (10)
example, with L = 3, the slots would be numbered from 0 to 7
and 2 = [l , 1, 0] would instruct the transmitter to send the
optical frequency pulse in slot 6. Notice that so long as even

or, on a per-photon basis,

one photon is detected in the slot where the pulse was sent,
the demodulator will correctly identify all L binary digits since 62,  = - In [e- A t 2-L (1 - edh)] /X . (natslphoton)
the pulse position will be known. But when no photons are (11)
detected in this slot, the entire modulation symbol is “erased”
and hence all L binary digits are simultaneously erased. Thus,
we can represent the demodulation symbol,_y,  as From Eq. (1 l), we see that for any fixed X > 0, A, increases

with L but

Y  =  b1’Y2, ’ * * 9Y,l (7)

where E = 2 when one or more photons are detected at the
receiver, but y = [E, E, , . , , E] (where E is the “erasure
indicator”) w’i;en  no photons are detected as happens with
probability e = e- h.

Notice that with respect to the transmission of a given
component xi of 2 and the reception of the corresponding
component yi of 2, the PPM channel becomes simply a binary
erasure channel (BEC) with the same erasure probability e as
for the entire modulation symbol. Thus, each use of th e
2=-ary  optical PPA4  channel is entirely equivalent to one use in
parallel of L BEG3  that are completely correlated in the sense
that an erasure either occurs on all L channels or on none.

Lym 18, = 1 (nat/photon) (12)

in agreement with Eq. (5).

The cutoff rate of the BEC with erasure probability E is
ln[2/(1 t E)] nats, as can be found by taking L = 1 in Eq. (10).
The total cutoff rate, (Ro)ToT,  of the L parallel BEC’s is thus

(RO)TOT = L In [2/(1  t E)] , (nats) (13)

which is much larger than the cutoff rate for the full channel
as given by Eq. (10). In fact, from Eq. (10) and Eq. (13) we
see that

The capacity of the BEC with erasure probability e is just
(1 - e) ln(2) nats. The total capacity, (oToT,  of the L parallel
BEC’s is thus

Ro
L% @JToT  = ’ * (14)

We will take up the interpretation of this result in Section
Cc) TOT = L (1 - e) In (2). (nats) (8) IV-A, where we will argue that a small value of R,/(R,)ToT



suggests a complexity advantage in coding over the component
channels rather than jointly coding the component channels.

Ill. Coding for the Optical PPM Channel
A. Joint Coding of the Component Channels

McEliece (Refs. 7 and 9) has proposed using Reed-Solomon
(RS) codes on Pierce’s 2=-ary PPM channel in the following
manner. Each modulation symbol 2 = [xi, x2, . . . xL] is
treated as a digit in the finite field GF(2=). An (n, k) RS code
over this field has block length n = 2= - 1, k information digits
for any k such that 1 < k <n,  and minimum Hamming
distance d = n - lc + 1, which is the maximum possible for a
linear code with n - k parity digits. A linear code with d = n -
k t 1 is called maximum-distance-separable (MDS) to empha-
size this optimality (Ref. 10, pp. 70-72).  See Ref. 10, pp.
277-308 for further properties of RS codes and for decoding
procedures.

The maximum number of erasures guaranteed correctable
by a linear code with minimum Hamming distance d is d - 1.
Thus an (n,  k) RS code can correct all patterns of n - k or
fewer erasures, but cannot correct all patterns of n - k t 1
erasures. All the well-known algebraic decoding procedures for
RS codes correctly decode all patterns of n - k or fewer
erasures but virtually no patterns of more than n - k erasures.
Thus, it is customary to assume that a decoding error occurs
whenever n - k t 1 or more erasures occur so that the block
error probability, P,, after decoding is

P,= 2  (;)E”(l-e)“-~
s=n-k+l

(15)

where e is the symbol erasure probability. Our interest,
however, is in the bit error probability, Pb, defined as the
average probability of error among the kL binary digits that
form the k GF(2L)  information digits in the RS code. When a
decoding error is made, it is made with high probability to a
nearest-neighbor codeword so that d = n - k t 1 symbol errors
are made. Because a RS code is cyclic, the error probability in
each symbol is the same so that the probability that a
particular information symbol is in error, given a decoding
error, is very nearly d/n. But on the average very close to half
of the binary digits forming an information symbol will be
incorrect when that symbol is decoded incorrectly. Hence, to a
very good approximation,

pb +. q+l p,

for the RS codes.

McEllece (Refs. 7 and 9) has observed that the best
performance (i.e., smallest P, for a given bandwidth after
coding) on Pierce’s PPM channel is obtained from the RS
codes with dimensionless rate k/n = l/2.  In particular, he
proposed using the (31, 16),  (63, 32) and (127,64)  RS codes
over GF(2’),  GF(26) and GF(27),  respectively. In Fig. 1, we
give plots of P, versus the code rate

6X = + y (nats/photon)

for these three codes. These plots were taken from Ref. 8,
where they were given as P, as calculated by Eq. (15), after
conversion to P, via Eq. (16). Note that the above expression
reflects the fact that on the average, h photons are used to
transmit each GF(2=)  encoded symbol. Note also that h
determines the erasure probability E according to Eq. (1).

Figure 1 shows that reliable communications using RS
codes is feasible for rates up to about 2 nats/photon. Notice
that the coding and modulation together expand the trans-
mitted bandwidth relative to on/off binary
factor

n 2L 2Ltl

F=kL”T

signalling by a

(17)

where the factor 2L/L  is due to the PPM modulation which
uses 2L slots to transmit L binary digits, and where the factor
n/k =I/2 is due to the RS code which uses (very close to)
2 encoded symbols for each information symbol. The band-
width expansion factor F is indicated on each curve in Fig. 1.
The 37-fold  expansion for the (127, 64) RS code is perhaps
near the practical limit for time resolution at reasonably high
data rates; the required 63 erasure-correcting RS decoder is
certainly near the practical limit of complexity.

The RS codes, because they are MDS codes, have maximum
erasure-correcting power for their length and number of
information symbols. Moreover, their symbol alphabet GF(2=)
is ideally matched to the 2=-ary  PPM channel since each
erasure by the receiver erases only one code symbol although
it erases all L binary components of that symbol. It is doubtful
that any block coding scheme can significantly outperform
McEliece’s  RS coding scheme on the PPM channel for a given
bandwidth expansion and a given decoder complexity.

8. Separate Coding of the Component Channels

We now consider employing a separate binary coding
scheme on each of the L BEC’s  that constitute the 2=-ary
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optical PPM channel. Note that this is equivalent to interleav-
ing L separate binary encoded streams to form a single binary
stream whose digits, taken in blocks of length L, constitute the
modulation symbols.

The use of binary block codes with algebraic decoding gives
disappointingly poor performance in this separate channel
mode of coding for the PPM channel. For instance, the (31,
16) binary BCH code has minimum Hamming distance 7 and is
thus 6 erasure correcting. However, the (31, 16) RS code
considered above can also be considered to be encoding 16
information bits on each component channel into 31 binary
digits, yet is 15 erasure correcting on each component channel.
The cross channel constraints imposed by the RS code
effectively more than doubles the number of correctable
erasures compared to the single channel BCH code. The BCH
code performs thus much worse than the RS code when L is
chosen for the BCH code to give the same bandwidth
expansion as does the RS code, and is not significantly easier
to decode. The (24, 12) 7 erasure correcting Golay binary
code fares little better than the BCH code, as can also be seen
from Fig. 1.

In light of the above, it seems quite surprising that good
performance relative to the RS codes can be obtained by
separate ly  coding the  component  BEC’s,  using short-
constraint-length convolutional codes with Viterbi (i.e.,
maximum-likelihood (ML)) decoding (Ref. 11, pp. 227-252).
In Fig. 1, we show the performance of dimensionless rate l/2
binary convolutional codes with constraint length K (measured
in information bits) for K = 4, 6 and 8. In each case, the
number L of component channels was chosen so that the
bandwidth expansion factor

appears puzzling at first that the short-constraint-length binary
convolutional codes perform so well in the separate channel
coding mode for the PPM channel. The explanation is that
Viterbi decoders, unlike algebraic decoders, degrade gracefully.
The free distance df of the convolutional code determines that
no patterns of df-  1 or fewer erasures can cause a decoding
error but that some patterns of df erasures will. However, the
Viterbi decoder, because it is a ML decoder, corrects the
overwhelming majority of patterns of df, df t 1, and more
erasures. This ability to go beyond the minimum distance
bound on erasure correction fully compensates for the
sacrifice made in coding separately on the component
channels.

The convolutional code performance curves in Fig. 1 are
actually the Bhattacharyya upper bounds on P, (Ref. 11, p.
246). According to this bound,

p, G f@> (19)

where f is a rational function determined by the state-transi-
tion structure of the convolutional encoder, and where z is the
channel parameter

z = c xmJJlO)PbIl).
Y

(20)

For the BEC,

2=fZ

=e -A (21)

2Lt1
F=-.-

L (18) where we have made use of Eq. (1).

matched that of one of the RS codes considered above.

We see from Fig. 1 that the binary K = 4 convolutional code
gives virtually the same performance as the (31, 16) RS code
with the same bandwidth expansion factor. The required
2K-1  = 8 state Viterbi decoder appears much easier to
implement than the corresponding 15 erasure correcting RS
decoder. Similarly, we see from Fig. 1 that the K = 6 binary
convolutional code is an attractive competitor to the (63,32)
RS code, and that the K = 8 binary convolutional code fares
well against the (127,64)  RS code.

Inasmuch as they sacrifice the substantial advantage that
can be gained by coding across the component channels
(which the RS codes exploit with maximum effectiveness), it

To obviate explicitly finding f, we employed the following
“trick” due to Omura (Ref. 12). For the additive white
Gaussian noise (AWGN) channel with binary antipodal signals
of energy E and one-sided noise power spectral density N,,
one finds

z=e -E IN, (22)

Thus, for the same code, the bound Eq. (19) on Pb  will be the
same for the BEC as for the AWGN if one chooses

X = E/No. (23)

By the artifice of Eq. (23), we converted the bound Eq. (19)
On p, versus  E,/No (where  E, = 2E is the energy per
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information bit) given in Ref. 12 to the convolutional code
performance curves given in Fig. 1.

IV. Interpretations, Remarks, and Questions
A. On the Significance of R,

As was first shown by Viterbi, the average bit error
probability for ML decoding of the ensemble of time-varying
convolutional codes of rate R and constraint length N
(measured in encoded digits) on a CDMC with cutoff rate R,
satisfies

P, < cR evNRo  ifR<R, (24)

where cR is an unimportant factor that depends on R but not
on N (Ref. 11, p. 312). Moreover, the error exponent R, in
Eq. (24) is also the exponent of Pb versus N for the sequence
of best codes at each length N when R M R, (Ref. 11, p. 320).
This strongly suggests that R, should be considered as at least
a rough measure of the necessary code constraint length in
channel symbols required to achieve a given P,, in the sense
that doubling R, will roughly halve the required N.

To validate this interpretation in a fairly trivial instance,
consider a CDMC that is the parallel combination of L
identical and independent CDMC’s.  Letting R, be the cutoff
rate of the full channel and (RO)TOT  be the sum of the cutoff
rates of the component channels, one easily verifies from
Eq. (9) that

Ro = (Ro)ToT (25)

so that R, is exactly .L times that of each component channel.
Thus, by the above interpretation, for a given Pb separate
coding on each channel should require a constraint length in
channel symbols L times that required for joint coding of the
channels. But a channel symbol for the full channel is
equivalent to L channel symbols for a component channel.
Thus, the required constraint length, measured in symbols for
the component channel, is the same whether separate channel
or joint channel coding is used. This is hardly surprising since
one use of the full channel is, because of the independence of
the component channels, entirely equivalent to L uses of one
component channel. But this does illustrate that the above
interpretation of R, is precisely correct in this case.

Next, consider the optical PPM channel viewed as L parallel
but completely correlated BEC’s.  Recall also from Eq. (14)
that R, for the full channel is generally much smaller than L
times that for each channel, i.e., R, <<(R,),,..  The above
interpretation of R, then suggests that a much smaller binary

digit constraint length on the component channels will suffice
to give the same Pb compared to the constraint length in
binary digits required for cross-channel coding. This suggests a
complexity advantage in coding separately for each of the
component channels. To illustrate the quantitative validity of
R, in this context, note that for dimensionless rate l/2  coding
on the 2L-ary  PPM channel, a rate of &nats/photon  corre-
sponds to an average of

X = -$ L In (2)/r% (26)

photons in the transmitted pulse. For example, with L = 5 and
61~  1 .O nats/photon, Eq. (26) gives h = 1.73 photons. From
Eq. (l), we find the corresponding erasure probability to be
1~~0.177.  Then from Eqs. (10) and (13) we find R, = 1.597
and (Ro)ToT  = 2.652, respectively. This suggests that the
required constraint length in binary digits required for joint
coding of the L = 5 BEC’s  will be about 2.652/l  597  = 1.66
times that required for separate coding of each BEC to obtain
the same P,.  To test this conclusion, consider again Fig. 1.
Note that for IQ = 1 .O, the K = 4 (L = 5) convolutional code
gives virtually the same P, as does the (3 1, 16) RS code. But
the RS code has a constraint length of 5 (31) = 155 binary
digits. Using the rule of thumb that the effective decoding
constraint length of a convolutional code is about twice that
of a block code with the same encoding constraint length, we
can approximate the equivalent block code constraint length
of the convolutional code as about 2K/(1/2)  = 16 binary
digits. The ratio 155/16 = 9.7 of the required constraint
lengths is rather larger than the ratio (RO)TOT/RO  = 1.66, but
the discrepancy is probably due more to the difficulty of
comparing a convolutional code to a block code than to the
coarseness of our interpretation of R,.

B. On ML Decoding of the RS Codes

We observed in Section III-B that the ML nature of Viterbi
decoding, which allows most patterns of more than df - 1
erasures to be corrected, was the primary reason for the strong
performance of binary convolutional codes as compared to the
RS block codes on the 2L-ary optical PPM channel. The
question then arises as to whether the performance of the RS
codes could not also be greatly enhanced if they were decoded
by a ML decoder rather than a distance-limited algebraic
decoder. The answer, surprisingly, is no.

Suppose that s erasures occur in the RS code symbols
where s > n - k. This leaves only n - s <k unerased digits in
the block. However, the MDS property of RS codes implies
that every set of k code positions is an information set, i.e.,
that it can be used as the positions containing the k
information digits. Thus, there will be at least one erased
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position to which we can assign an arbitrary digit in GF(2L)
and still be able to find a codeword that matches it and all the
unerased digits. Thus there will be at least 2L codewords
matching all the unerased digits, and even a ML decoder can
do no more than guess which of these. was the transmitted
codeword. It follows that, given that more than n - k erasures
have occurred, any decoder for the RS code will err with
probability at least (2L 7 1)/2L = 1, even though the code can
correct all patterns of n - k and fewer erasures. The conclusion
is that no RS decoder can degrade gracefully on the optical
PPM channel and that a ML decoder is negligibly better than
an algebraic decoder on this channel. We caution the reader,
however, to note that this conclusion would not hold on many
‘other types of channels where ML decoding would be
significantly better than algebraic decoding of RS codes.

C. Correlated Decoding of the Component Channels

When coding separately for each of the L component BEC’s
of the optical PPM channel, one can either use L separate
binary coding systems or time-share one such system that
operates at L times the speed required for the separate
systems. In either case, the decoding complexity would be
reckoned at about L times that of each separate system. We
point out now that there is a possibility to reduce substantially
the decoding complexity when separate channel coding is
used.

Because the L components BEC’s of the 2L-ary optical PPM
channel ‘are completely correlated, the decoder for one
channel can pass useful information to the other L - 1
decoders to simplify their decoding tasks; i.e., the decoders
can profitably operate in a “correlated” fashion. To see this
more clearly, note that the decoder for a linear (whether block
or convolutional) binary code used on the BEC.  effectively
solves the linear equations, determined by the code, that relate
the erased digits to the unerased digits. The decoder effectively
evaluates each erased digit as a modulo-two sum of certain
unerased digits. Thus, after the first decoder has determined
which set of unerased digits should be added to find a given
erased digit, it can pass this information to the other L - 1

decoders. Then, because the erasure patterns on all L BEC’s
are identical, these other decoders need merely to add
(modulo-two) the unerased digits that have been received over
their own channels in those positions specified by the first
decoder. Such correlated or “cooperative” decoding is clearly
possible in principle and would have obvious complexity
advantages. However, we have not yet succeeded in finding a
general way to implement such correlated decoding when a
Viterbi decoder is used, although we have been able to find
simple implementations for certain very-short-constraint-
length convolutional codes.

D. Correlated Channels

The somewhat curious properties of the optical PPM
channel viewed as a parallel combination of completely
correlated BEC’s suggest that it might be interesting to
consider more generally a CDMC that is-the parallel combina-
tion of identical CDMC’s  that have some specified depend-
ency. The relationship of R, to (RO)TOT  should be especially
interesting. It should also be interesting to consider whether
correlated decoding to reduce decoding complexity can be
performed when each component channel is separately
encoded.

E. Background Noise on the Optical PPM Channel

It is clear that the self-noise-limited optical PPM channel
model used throughout this paper becomes physically inappro-~
priate when the signalling bandwidth becomes sufficiently
large. Account then must be taken of background radiation
that can lead to “errors” as well as erasures by the (preferably
soft-decision) demodulator. We will not pursue these matters
further here except to note that the short-constraint-length
convolutional codes with Viterbi decoding can easily be
adapted to make use of the soft-decision demodulation
information, but the RS block codes cannot. Thus, the
convolutional codes should become even more attractive
vis-a-vis the RS codes when background noise is sufficiently
strong so that it must be taken into account. Convolutional
codes with Viterbi decoding seem to make a more robust
coding system than do RS codes with algebraic decoding.
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Fig. 1. Bit decoding error probability versus code rate in nats/
photon for selected Reed-Solomon (RS) codes, convolutional
codes (CC), the (31, 16) BCH code, and the (24, 12) Golay code on
the optical PPM channel. F is the bandwidth expansion factor due
both to the modulation system and coding scheme
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